Problem 13 Pickle Night Light

International Physics Tournament 2020 • University of California, Berkeley Abrego, Ceja, Hathaway, Kadam, Mal, Mehrotra

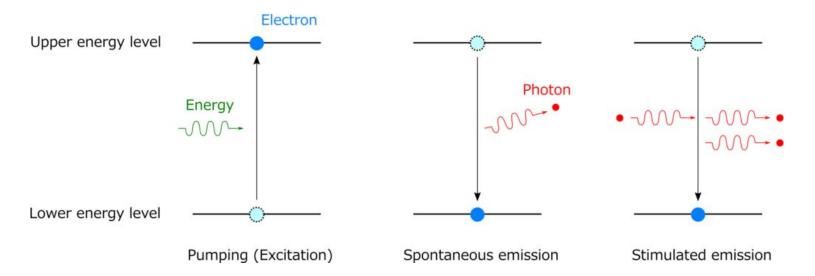
Sending Current Through Pickle

- U.S Outlets: 120V at 60 Hz
- Electrodes heat up to at least 100 C before light emission occurs
- Inside pickle small pockets of chlorine and hydrogen gas form near negative electrode
 - Analogous to electrolysis
 - Electrode polarity irrelevant if only concerned with temperature of metal
- Hydrogen gas layer is small and behaves as an insulator
 - Spark generated across layer
 - Sodium is thermally excited

Problem Statement

If you pass a current from a conventional household wall socket through a pickle, it will glow. Investigate this effect, including the effect of alternating currents, and the use of multiple pickles in a chain. What is the mechanism (and time) for a pickle to die out?

What is a Pickle?


- A pickle is a cucumber marinated in a brine solution over an extended period of time. The brine solution consists of aqueous Sodium Chloride and Acetic Acid (Vinegar).
- The cucumber is subjected to extreme conditions (low pH, low oxygen levels, and high saline concentrations) resulting the growth of extremophile bacteria.
- *Main Take Away*: By pickling the cucumber, we increase the conductivity and introduce foreign species (mainly ions) into our system.

Example: Demonstration showing conductivity of salt water

Atomic System

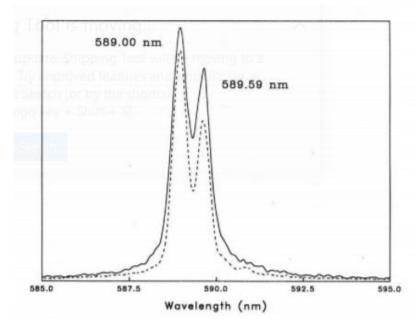
- Pickle acts as bath for two level system and thermal energy deposits energy into system
- Similar to stimulated emission, but excitation due to thermal energy rather than photon
- If sufficient energy exists, sodium ion electron excited from ground to higher state
 - Falls back to lower energy after period of time

Atomic Theory (For reference)

- Entire system and mechanics defined by Hamiltonian
 - First term defines sodium ion
 - Second term defines thermal energy of bath
 - Third term defines interaction of energy with ion

 $H = H_{Na} + H_{thermal} + H_{Interaction}$

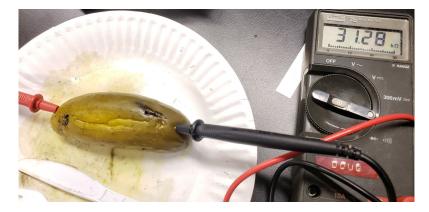
 Compare with dynamics of two level system due to externally applied field used to drive transitions (This is optically driven, just for an analogy not directly applicable to sodium ions)


$$H_S = -\hbar\delta|2\rangle\langle 2| + \hbar\Omega^*|1\rangle\langle 2| + \hbar\Omega|2\rangle\langle 1|$$

$$\dot{\rho}_S = -\frac{\gamma}{2}(\bar{n}+1)\left(\sigma_{22}\rho_s - \sigma_{12}\rho_S\sigma_{21} + h.c.\right) - \frac{\gamma}{2}\bar{n}\left(\sigma_{11}\rho_S - \sigma_{21}\rho_S\sigma_{12} + h.c.\right) + \frac{1}{i\hbar}[H_S,\rho_S]$$

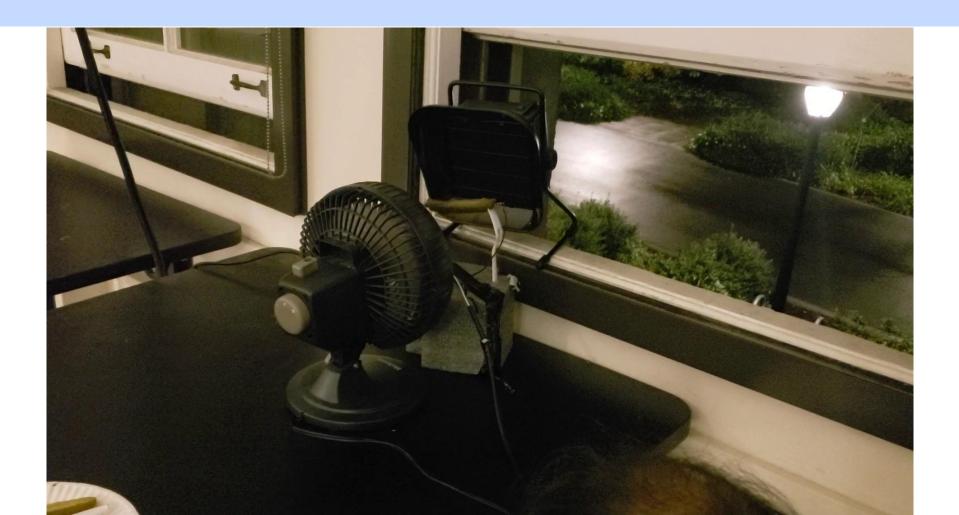
Emission of Light

- Photon emitted from electron dropping energy level has wavelength corresponding to energy required to excite it
- Two main wavelengths of light emitted
 - 589.00 nm and 589.59 nm



Cool Part Glowing Pickle Experiments

Experimental Procedures


Experimental Setup

- 1. Measure resistance of pickles out of jar
- 2. Place on stand near ventilation
- 3. Wall plug stripped and inserted into pickle
 - a. Live and Neutral Wire inserted on ends (attached to electrodes)
 - b. Ground tied down/floating
- 4. Plug into wall
 - a. Record video
 - b. Observe glow and near which electrode
- Single Pickle
- Pickle Chain
 - 3 Pickle Chain

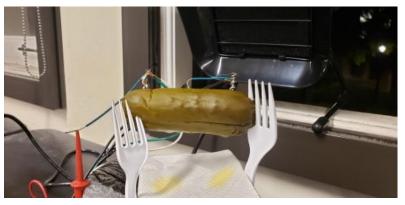
Single Pickle

- 6 trials done
 - First failed due to regulators in extension cords being used
 - Also due to set up of wiring to wall
 - Attempted to maintain safe environment
- Pickles began sparking due to rough edges on nails used for electrodes
 - This is when trials would be cut short

Pickle Chain

- 3 pickles attached together with flat electrodes in between
- Only pickle on live wire glowing
- Indication of polarity effects on glow
- Potentially did not wait long enough for any other pickle to glow
 - Other demonstrations of same setup show center pickle glowing

Additional Observations



Resistances for single pickle

Pickle #	Resistances (kΩ)	Successful
1	203.5 +/- 5	No
2	199.9 +/- 5	Yes
3	≈25 +/- 5	Yes
4	≈10 +/- 5	Yes
5	≈20 +/- 5 , ≈6 +/- 5	Yes
6	≈20 +/- 5 , ≈25 +/- 5	Yes

Additional Images

Conclusion